
© Indium Software

Leveraging Flutter for Headless
Systems: Empowering User Interfaces
in Displayless Environments

A Whitepaper

01© Indium Software

Table of Contents

2. Introduction to Flutter

1. Executive Summary 03

4. Limitations of The Traditional Approach 06

04

3. Challenges & Concerns

3.1 Accompanying Considerations

04

05

5. Real-world Applications and
 Diverse Use Cases

5.1 Situation

5.2 Comprehensive Project Exposition

5.2.1 Process Diagram

5.2.2 Section 1: Problem Formulation

5.2.3 Section 2: The Approach

5.2.4 Section 3: Software Development

09

09

10

10

10

11

11

02© Indium Software

5.2.5 Challenges

5.2.6 Testing & Build Generation

5.3.1 Crop Monitoring System

5.3.2 Cattle Monitoring System

5.3.3 Energy Consumption Monitoring
 Dashboard

7. Conclusion

6. Quantifiable Benefits 17

18

8. References 19

5.3 Expanding Possibilities:
 Tailoring Solutions for Diverse Projects

5.2.4.1 Sniff Signal

5.2.4.2 Video Broadcast

5.2.4.3 Rendering Real-time Data and
 Video Streams: Integration
 and Implementation

12

13

14

14

15

16

16

16

16

03© Indium Software

1. Executive summary
The demand for headless systems, frequently avoiding conventional displays, has
seen a remarkable upswing in our dynamic technological landscape. These
systems find application across a wide spectrum, from Internet of Things (IoT)
solutions to embedded systems. Yet, an escalating necessity arises to furnish
them with a user interface, facilitating seamless interaction and control. This is
where Flutter, an open-source UI software development kit (SDK) curated by
Google, emerges as a pioneering solution.

This white paper explores the potential of utilizing Flutter as the vanguard for
headless systems. It delves into Flutter's pivotal features and advantages,
showcasing why it stands out as the paramount choice for crafting immersive
interfaces. By harnessing the capabilities of Flutter, we're poised to revolutionize
user experiences in displayless environments, setting a new standard for
interaction in this rapidly evolving digital era.

04© Indium Software

Introduced by Google in 2017, Flutter stands as a formidable framework
empowering developers to craft applications with a native-like feel, all from a
single unified codebase. At its core lies Dart, a contemporary and efficient
programming language, that facilitates the creation of applications that compile
into native code, ensuring optimal performance. Its distinctive approach to UI
development sets Flutter apart, delivering high customizability and an
aesthetically captivating user interface, elevating the user experience to
unprecedented levels. This fusion of technology and design places Flutter at the
forefront of modern app development, redefining what's possible in creating
seamless, engaging user interfaces.

2. Introduction to Flutter

Designing user interfaces for headless systems without conventional displays
poses a formidable challenge, impeding effective user interaction. The endeavor
to retrofit native platforms for these specialized systems demands substantial
time and customization efforts. What's required is a versatile and efficient
framework tailored precisely to meet these distinctive demands.

Cross-platform compatibility introduces an added layer of complexity,
necessitating interfaces that seamlessly adapt to diverse platforms and devices,
thereby reducing the maintenance burden. To squarely confront these hurdles, a
framework is indispensable; one that furnishes comprehensive tools, boasts an
extensive library of UI components, and exhibits exceptional performance. Flutter
steps forth as a compelling solution, projecting mobile app-like views onto
headless systems, thereby bestowing intuitive and interactive interfaces with
impressive efficiency. This innovative approach promises to reshape the
landscape of user interaction in headless environments, offering users a
seamless and dynamic experience across various platforms.

3. Challenges & Concerns

05© Indium Software

Resource Constraints: Headless systems often operate with limited resources,
including processing power and memory. This necessitates an efficient
framework that can deliver optimal performance without overtaxing the system's
capabilities.

3.1 Accompanying Considerations:

Resource
Optimization:

Ensure peak performance within system
constraints without overtaxing resources.

Inclusive
Design:

Implement accessibility features for diverse
users, including those with disabilities.

Real-time
Updates:

Enable seamless real-time data
synchronization with other devices or servers.

Security
Best Practices:

Address unique security concerns with
secure communication protocols.

Scalability
Assurance:

Adapt to new hardware and platforms,
ensuring long-term viability.

Community
Support:

Leverage a thriving developer community
and extensive documentation.

06© Indium Software

When contrasting native apps with cross-platform solutions like React Native and
Flutter, it's crucial to delve into their underlying architectures. Native apps on
Android and iOS lean on built-in widgets from the respective platforms. When
additional functionalities are needed, platform-specific native APIs become
essential. React Native employs a bridge to interface with native features while
maintaining a uniform interface. This can introduce performance considerations,
particularly for intricate UI elements. Flutter boasts its robust rendering engine,
Skia. This empowers it to construct the UI independently of the underlying
operating system. The result is meticulous control over each pixel, facilitating the
creation of highly customizable, visually captivating interfaces. Flutter compiles
directly into native ARM (Advanced RISC Machine) code. This circumvents the
necessity for a bridge, leading to accelerated performance and responsiveness.
This comparison underlines the distinctive approaches and implications of
native development and cross-platform solutions, shedding light on the
advantages and limitations of each.

4. Limitations of The Traditional
 Approach

07© Indium Software

Below is an in-depth exploration of Flutter's low-level architecture, providing a
comprehensive understanding of how it operates at a fundamental level.

(Note: At the time of publishing this white paper, Flutter's latest rendering engine,
Impeller, is still in the beta phase for Android. Therefore, no comments can be
made on its performance and capabilities.)

Furthermore, Flutter has gained significant traction and recognition among
developers recently. In the latest Stack Overflow Developer Survey, Flutter scored
9.12%, securing the 9th position as one of the most popular technologies. This
survey reflects the growing adoption and interest in Flutter as a preferred
framework for application development.

Additionally, Flutter stands strong in admiration and desirability, with 14.04% of
respondents admiring the framework and an impressive 64.43% expressing their
desire to work with Flutter.

These statistics showcase developers' confidence and enthusiasm for Flutter, a
robust and reliable framework for building interfaces.

08© Indium Software

09© Indium Software

5.1 Situation:

An architecture was sought to fulfill several objectives in response to the client's
requirements. These encompassed establishing seamless communication
between the program and the model, enabling dynamic real-time switching of
machine learning models, providing immediate access to sensor readings (CO2,
O2, temperature, and humidity), and implementing live security camera
functionality. Our proposed solution centered around the versatile Flutter
framework, known for crafting intuitive, cross-platform user interfaces.

Leveraging Flutter's capabilities allowed us to create a unified, user-friendly
interface that seamlessly functions across various devices and operating
systems. The framework's hot-reload feature expedited development, enabling
rapid iteration and refinement of the user experience.

Choosing Flutter also enabled us to harness its extensive widget library, ensuring
our application met our client's technical requirements and delivered a visually
appealing and engaging user interface. This technology choice significantly
accelerated development, resulting in a more efficient and cost-effective solution.

In the forthcoming sections, we will delve deeper into the technical intricacies of
our Flutter-based architecture, shedding light on how it enabled us to efficiently
achieve the client's objectives while maintaining a user-centric approach
throughout the project.

5. Real-world Applications and
 Diverse Use Cases

Every successful app project commences with a precisely defined problem. Here,
we address the challenge of olfaction detection and detail our approach to
resolving it. This involved breaking it down into sub-problems, extensive research
for solutions, and carefully selecting the appropriate technology stack. The app's
tasks encompass displaying continuous smell data, streaming a real-time camera
feed, and facilitating model selection. Before embarking on these tasks, it was
imperative to establish direct communication with the edge device (SBC – Single
Board Computers). Given the app's real-time demands, any delay surpassing 2
seconds was deemed unacceptable, necessitating the exclusion of an
intermediate router.

10© Indium Software

5.2 Comprehensive Project Exposition

5.2.1 Process Diagram

5.2.2 Section 1: Problem Formulation

View Subject
Live video feed

Sniff Data

Sensor Feed

Video Stream
Service

Sniff Data
Service

Temp &
Humidity Service

O2 & CO2
Service

Edge Device
M2 MAC

Camera Module
Basler

Sensor Module

inter-process
communication

inter-process
communication

REST
API &
Web

Sockets

View
Action

Stream

Stream

Stream

11© Indium Software

To tackle the challenges in Section 1, we adopted a strategic approach to
establish efficient communication between our application and the edge device,
enabling real-time task execution.

Initially, we considered two potential solutions for linking the edge device to the
mobile application: utilizing the mobile device as a hotspot and connecting the
edge device to it, or using the Edge Device's (Mac’s) hotspot and connecting the
mobile device to it. To access any service or application on a machine, we
required two key elements: the IPv4 (RFC 791) address and the port number.
While we possessed the latter (port number) while managing both the front and
back end, obtaining the IP address presented a challenge. Android (API >29)
restricts retrieving the device's IP connected to its own hotspot.

Transitioning to the second solution initially seemed straightforward. However,
we encountered a connection issue when attempting to connect to the server
using a dummy app. After nearly an hour of investigation, it became apparent that
the IPv4 (RFC 791) address we attempted to reach belonged to a different
network. This underscores a fundamental networking concept— a device can
have multiple IP addresses for each connected network. This prompted us to
quest to ascertain the server’s IP from the app’s perspective. Fortunately, we were
able to accomplish this without significant difficulty.

5.2.3 Section 2: The Approach

Flutter offers a rich repository of built-in widgets encompassing Layout, Material
Design (Google’s Material Design), Cupertino (Apple’s iOS design guidelines),
Media, Animation, and more. When skillfully combined, these widgets empower
the creation of visually striking UIs. Allow us to showcase the formidable
capabilities of Flutter's widget system through the illustration of a UI element.

5.2.4 Section 3: Software Development

https://www.rfc-editor.org/rfc/rfc791
https://www.rfc-editor.org/rfc/rfc791

12© Indium Software

Within this specific screen, a wavy background is featured. Notably, this isn't an
image, but a design meticulously crafted on a canvas using code. This exemplifies
the exceptional versatility and precise control achievable with Flutter widgets. This
level of customization ensures that the UI aligns seamlessly with the project's
unique requirements and vision.

With the UI in place, we had two critical components at our disposal. Firstly, the
data stream from the Olfactometer needed to be presented as a sniff signal,
updating every 2 seconds. Secondly, we integrated a live video feed from the
camera into the interface. These elements formed our interactive application's
backbone, providing users with real-time insights and visual feedback.

The data stream from the Olfactometer was harnessed through Open Ephys, a
robust open-source software. This data was multidimensional, encompassing
channels ranging from 0 to approximately 5K, each with a capacity of 1kHz. To
manage this intricate data stream, we opted for Web Sockets (RFC 6455) as they
provided a more fitting solution compared to the conventional HTTP (V2) (RFC
7540) protocol. This choice ensured efficient and seamless data flow handling, a
pivotal aspect in delivering real-time updates for the sniff signal.

5.2.4.1 Sniff Signal

https://open-ephys.org/
https://www.rfc-editor.org/rfc/rfc6455
https://datatracker.ietf.org/doc/html/rfc9113
https://datatracker.ietf.org/doc/html/rfc9113

13© Indium Software

The approach to video broadcast was distinctly unique in our case. Instead of a
conventional camera, we utilized a specialized scientific-grade camera called
Basler. This camera boasts various features and settings that surpass those of
standard cameras. Noteworthy attributes include high-speed data transfer,
precise color reproduction, low-light sensitivity, and advanced image processing
capabilities. Additionally, the camera can capture images and videos at
exceptionally high resolutions, rendering it ideal for scientific research and
industrial applications where accuracy and precision are paramount.

The Basler camera provided a high-quality video feed to achieve our project
objectives. However, it's worth mentioning that the specific camera procured by
our client did not support chunk data transmission, a requirement for protocols
like RTSP (RFC 2336) or similar alternatives. Consequently, we leveraged Web
Sockets (RFC 6455) again, enabling the transmission of images over the network
at an impressive speed of approximately 90 frames per second. This adaptation
ensured seamless integration and real-time video feed streaming within our
application.

5.2.4.2 Video Broadcast

https://www.baslerweb.com/en/products/cameras/
https://www.baslerweb.com/en/products/cameras/
https://www.ietf.org/rfc/rfc2326.txt
https://www.rfc-editor.org/rfc/rfc6455

14© Indium Software

In Flutter, there exist multiple methodologies for presenting data on a screen,
including the use of setState or StreamBuilder. The choice is contingent on the
specific use case and the application's requirements.

The setState method, while simpler, is well-suited for small-scale updates.
However, upon invocation, it triggers a complete rebuild of the widget tree, which
can be resource-intensive and potentially impact performance.

On the contrary, StreamBuilder proves more adept at handling real-time updates
and accommodating large-scale data rendering. It actively listens to a data
stream and selectively rebuilds only the affected portion of the widget tree. This
approach alleviates strain on system resources and enhances overall
performance. For our project, we strategically implemented StreamBuilder to
manage changes efficiently. For instance, the Graph and Video Streaming
components are rendered separately from the overall screen. Model selection and
sensor fine-tuning are seamlessly handled through standard REST APIs, ensuring
an optimized and responsive user experience.

5.2.4.3 Rendering Real-time Data and Video Streams: Integration
and Implementation

Throughout the development journey, we encountered several hurdles, primarily
centered around the task of streaming data from a socket connection to multiple
screens. This arose from the fact that the stream broadcast feature, as outlined in
the Flutter documentation, didn't function as anticipated. To surmount this
obstacle, I turned to leveraging BehaviorSubject from RX_dart. Those familiar
with the RX library understand that it can be intricate and entail verbose syntax.
Fortunately, my prior experience with Angular applications facilitated a smoother
transition. Additionally, given that in my design the full-screen operated as a new
widget being pushed onto the call stack, I opted to implement the service as a
Singleton, ensuring seamless data flow.

5.2.5 Challenges

15© Indium Software

Furthermore, we encountered some minor challenges regarding the integration of
custom SVG icons into the project. Specifically, I discovered that there was no
native way to directly incorporate SVG icons (relying on a package felt less than
ideal). Instead, I had to convert them into a font format and subsequently import
them into the project. While not a major setback, it did introduce some
inconvenience and added supplementary steps to the development process. This
experience serves as a valuable reminder of the significance of attending to even
the minutest details, as they can significantly impact the overall developer
experience.

An unexpected challenge surfaced during our rigorous testing phase: while video
streaming appeared seamless in the emulator, the app's connection with the edge
device would abruptly terminate. Identifying the root cause proved elusive initially.
However, further investigation uncovered a bottleneck in the underlying network
connection (IEEE 802.11g), resulting in sporadic terminations. To surmount this
issue, we strategically shifted to a different band (IEEE 802.11ac
@48Mhz/80Mhz), which led to a markedly smoother operation and facilitated
uninterrupted development.

Our primary focus during development was on Android, with future plans to
expand to iOS. For Android, we leveraged a feature known as "split APKs," enabling
the creation of separate APKs tailored to different CPU architectures (e.g., ARM or
x86). This optimization significantly reduced the overall application size by
excluding unused binaries. However, in the case of Flutter, the APK size is also
influenced by the number of packages incorporated. To maintain a compact app
size (approximately 11MB), we predominantly crafted our own classes and
integrated only essential packages or those too time-intensive to develop from
scratch. This strategic approach ensured that the app remained lean without
compromising functionality or performance.

5.2.6 Testing & Build Generation

16© Indium Software

By employing a similar strategic approach, we have the capability to adeptly meet
the requirements of related projects that exhibit similar functionality or entail
modifications that build upon the existing features. This method enables us to
efficiently cater to the needs of analogous endeavors, all while leveraging the
solid foundation already in place.

Embracing this approach not only streamlines the development process but also
optimizes resource utilization. It capitalizes on existing solutions, fostering
efficiency, and promoting uniformity across projects that share common
functionalities or seek incremental enhancements. This systematic approach
ensures that each project benefits from a wealth of accumulated expertise and
established best practices.

5.3.1 Crop Monitoring System Leveraging a robust and versatile framework, we
have the capability to design visually engaging and interactive user interfaces
precisely tailored for crop monitoring systems. The application interface will
seamlessly present real-time sensor data in an intuitive and user-friendly manner.
This cross-platform solution empowers clients to conveniently access crucial
insights, enabling data-driven decisions to optimize irrigation schedules, monitor
crop health, and ultimately maximize overall yield.

5.3.2 Cattle Monitoring System The system benefits from a dynamic and
responsive user interface, offering real-time tracking of cattle health, location
updates, and behavioral analysis. This comprehensive solution equips clients
with effortless access to vital livestock information across various devices,
streamlining herd management and facilitating well-informed decision-making.

5.3.3 Energy Consumption Monitoring Dashboard The energy consumption
monitoring dashboard boasts a visually appealing and user-friendly interface,
purpose-built to meticulously track and analyze real-time energy usage data. This
interactive platform empowers users to establish efficiency goals, receive
tailored recommendations, and actively foster a more sustainable future. With its
cross-platform capabilities, the dashboard ensures accessibility across various
devices, delivering a seamless and engaging user experience.

5.3 Expanding Possibilities: Tailoring Solutions for Diverse Projects

17© Indium Software

6. Quantifiable Benefits

Efficient Development: Flutter's cross-platform capability allows developers to
work from a single codebase, significantly reducing the time and effort required
for development compared to maintaining separate codebases for different
platforms.

Seamless Adaptation: Flutter's extensive UI component library offers
pre-designed and customizable widgets. This enables interfaces to adapt to
various headless systems seamlessly, ensuring functionality and user experience
remain intact.

High Performance: Powered by Flutter's robust rendering engine, Skia (now
Impeller), developers gain precise control over each pixel on the screen. This
translates to swift and responsive interfaces, even on headless systems with
limited computational resources, resulting in an elevated user experience.

18© Indium Software

This white paper has delved into the extensive capabilities of Flutter, a versatile
cross-platform framework, for the development of applications in headless
systems. We provided an overview of its introduction, rendering engine, and
highlighted its popularity. Additionally, we showcased practical applications such
as Crop Monitoring, Cattle Monitoring, and Energy Consumption Dashboard.

The successful implementation of the Olfactory Detection App using Flutter
serves as a testament to the effectiveness of our systematic approach. However,
Flutter harbors immense potential beyond these specific cases across diverse
industries and environments. For instance, our app can be instrumental in
identifying various odors in critical locations like hospitals and airports. Using
Flutter, this application can enhance the overall experience and ensure a safer and
more secure environment for everyone within such facilities.

With its visually appealing user interfaces, cross-platform adaptability, and
continual advancement, Flutter stands at the forefront of innovation in headless
system applications. We trust that this white paper imparts valuable insights and
serves as a guiding light for maximizing the potential of Flutter within the realm of
headless systems.

7. Conclusion

19© Indium Software

1. Flutter Architectural Overview. Retrieved from: https://docs.flutter.dev/resources/
 architectural-overview.

2. Stack Overflow Developer Survey 2023 - Most Popular Technologies. Retrieved
 rom: https://survey.stackoverflow.co/2023/#technology-most-popular-technologies.

3. Stack Overflow Developer Survey 2023 - Admired and Desired Technologies. Retrieved
 from: https://survey.stackoverflow.co/2023/#technology-admired-and-desired.

4. Flutter Architecture https://www.javatpoint.com/flutter-architecture#:~:text=
 The%20topmost%20layer%20is%20the,everything%20in%20the%20Flutter%20app

5. Build apps for any screen: https://flutter.dev/

6. What is Flutter App Development and How Can It Benefit Your Business?

7. https://www.thedroidsonroids.com/blog/what-is-flutter-app-development

8. References

https://www.thedroidsonroids.com/blog/what-is-flutter-app-development

1

sales@indiumsoftware.com
For Sales Inquiries

info@indiumsoftware.com
For General Inquiries

www.indiumsoftware.com

USA

Cupertino | Princeton
Toll-free: +1-888-207-5969

INDIA

Chennai | Bengaluru | Mumbai | Hyderabad
Toll-free: 1800-123-1191

SINGAPOREUK

Singapore
Ph: +65 6812 7888

London
Ph: +44 1420 300014

https://www.facebook.com/indiumsoftware/
https://twitter.com/IndiumSoftware
https://www.linkedin.com/company/indiumsoftware/

